VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Main Examinations, December-2017

 Applications of Elementary Number Theory in Cryptology

 Applications of Elementary Number Theory in Cryptology}

Time: 3 hours

Max. Marks: 70
Note: i) Answer ALL questions in Part-A and any FIVE from Part-B
ii) Scientific calculators are permitted. iii) Assume missing data if any.
Part-A ($10 \times 2=20$ Marks $)$

1. Show that $\mathrm{a}^{2} \equiv \mathrm{~b}^{2}(\bmod m)$ if $a \equiv b(\bmod m)$ where a, b, m are integers.
2. Convert 451 in to binary system.
3. Define inverse of a modulo m where a and m are integers.
4. Define ciphertext.
5. Write deciphering formula for block cipher.
6. Encipher NICE using Caesar cipher.
7. Write deciphering formula in public key cryptography.
8. Write the enciphering formula in knapsack cipher system.
9. Discuss whether the sequence $(3,13,17,19,25,89)$ is super-increasing or not
10. Compute ei $=$ Mi.yi, $\mathrm{Mi}=\mathrm{M} / \mathrm{mi}, \mathrm{m} i=\{11,13,17,19\}$, yi are inverses of Mi modulo mi and $\mathrm{M}=$ product of mi's.

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

(All sub-questions carry equal marks)
11. a) If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{m}$ are integers with $\mathrm{m}>0$ such that $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ then show that
i) $\mathrm{a}+\mathrm{c} \equiv \mathrm{b}+\mathrm{c}(\bmod \mathrm{m})$
ii) $\mathrm{ac} \equiv \mathrm{bc}(\bmod \mathrm{m})$.
b) If $13 \equiv 8(\bmod 5), 7 \equiv 2(\bmod 5)$ then show that the addition and subtraction of congruence is true.
12. a) Solve the linear congruences $3 x+4 y \equiv 5(\bmod 13) ; 2 x+5 y \equiv 7(\bmod 13)$.
b) If B1 and B2 are inverses of A then show that $B 1 \equiv B 2(\bmod m)$.
13. a) Encipher the message GOOD DAY by Caesar cipher.
b) Decipher LFDP VLDZL using Caesar cipher.
14. a) Using the prime 101 and enciphering key $\mathrm{e}=3$, encipher the message GOOD using modular exponentiation.
b) Encipher the message EXPONENTIATION when $p=2633, \mathrm{e}=29$.
15. a) Find p and q if $\mathrm{n}=\mathrm{pq}=4386607$ and $\emptyset(n)=4382136$.
b) What is the ciphertext that is prodiced when RSA cipher with key $(\mathrm{e}, \mathrm{n})=(3,2669)$ is used to encipher the message BEST WISHES?
16. a) Decide whether the sequence $(11,21,41,81,151)$ is super-increasing with explanation.
b) Encipher the message BUY NOW using the knapsack cipher based on the sequence obtained from the super-increasing sequence $(17,19,37,81,160)$ by performing modular multiplication with multiplier $\mathrm{w}=29$ and modulus $\mathrm{m}=331$.
17. Answer any two of the following:
a) Find the inverse of $\left(\begin{array}{lll}2 & 5 & 6 \\ 1 & 0 & 5 \\ 2 & 4 & 2\end{array}\right)$
b) Encipher the message STO PPA YME NTE by block cipher system
c) Briefly explain secrete sharing system.

